当前位置: 首页 > news >正文

oppo软件商城seo好学吗

oppo软件商城,seo好学吗,同时做几个网站的seo,境外服务器做新闻网站传统作业场景下电力设备的运维和维护都是人工来完成的,随着现代技术科技手段的不断发展,基于无人机航拍飞行的自动智能化电力设备问题检测成为了一种可行的手段,本文的核心内容就是基于YOLOv7来开发构建电力设备螺母缺销检测识别系统&#xf…

传统作业场景下电力设备的运维和维护都是人工来完成的,随着现代技术科技手段的不断发展,基于无人机航拍飞行的自动智能化电力设备问题检测成为了一种可行的手段,本文的核心内容就是基于YOLOv7来开发构建电力设备螺母缺销检测识别系统,首先看下实例效果:

简单看下数据集:

数据集均由无人机航拍进行采集。

这里有两个比较突出的问题,一方面是数据本身都是高分辨率的图像,另一方面是由于这里的检测对象都是非常小的目标,相较于整个图像的面积来说占比极小,对于模型的来说检测识别的难度是很高的。这里我尝试了基于原始的图像来直接开发构建检测模型,发现效果非常不理想,结合高分辨率和小目标这两个关键点,考虑对原始高分辨率图像进行切分处理,切分后数据如下:

简单的实现如下所示:

from PIL import Imagedef split_image(image_path, tile_width, tile_height):image = Image.open(image_path)image_width, image_height = image.sizetiles = []for y in range(0, image_height, tile_height):for x in range(0, image_width, tile_width):box = (x, y, x + tile_width, y + tile_height)tile = image.crop(box)tiles.append(tile)return tiles# 示例用法
image_path = "path/to/your/image.jpg"
tile_width = 100
tile_height = 100sub_images = split_image(image_path, tile_width, tile_height)
for i, sub_image in enumerate(sub_images):sub_image.save(f"sub_image_{i}.jpg")

当然了也可以借助于一些其他工具模块,总之实现自己的目的即可,这里就不再赘述了。

下面以具体的实例来进行说明,实例测试图像如下所示:

切分结果如下所示:

接下来为了确认切分逻辑的正确性,我们依次读取切分得到的子图数据,来整体显示在一张图像上,如下所示:

可以看到是没有问题的,数据处理就到这里,接下来开始构建模型训练阶段。

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 3# class names
names: ['DefectPin', 'Nut', 'NormalPin']

这里一共开发构建了两款不同参数量级的模型,分别是yolov7-tiny和yolov7,接下来我们来整体对比分析模型的性能差异:
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss对比】

可以看到:在各个指标对比上yolov7全面碾压的态势超越yolov7-tiny。

接下来详细看下yolov7的结果详情:
【混淆矩阵】

【训练可视化】

【Batch计算实例】

实例推理效果如下所示:

可以看到:目标对象区域非常非常的小,如果不仔细观察可能都会漏掉了。

感兴趣也都可以参照本文的建模处理思路来进行构建自己的模型,相信会有一定的收获。

http://www.gaoduandz.com/news/130.html

相关文章:

  • 外贸网站建设 推广线上营销策略
  • 外贸工具大全网站google chrome download
  • b站推广网站入口2022网站怎样优化文章关键词
  • 网站开发是打代码吗独立站怎么建站
  • 重庆做网站人才人民日报新闻消息
  • 物联网管理平台登录杭州seo搜索引擎优化
  • 做网站备案需要什么百度应用下载
  • 建个网站怎么让香港客户看到贵州快速整站优化
  • wordpress 获取 url杭州百度seo代理
  • 网站设计服务流程百度seo简爱
  • 友汇网网站建设管理后台操作沈阳网站制作推广
  • 专做水果的网站百度推广一个月多少钱
  • 怎样做浏览的网站不被发现广州seo营销培训
  • 做调查赚钱网站推广恶意点击软件怎样使用
  • 网站建设应该注意哪些推广手段
  • jsp网站开发典型模块与实例精讲sem是做什么的
  • 建设银行信用卡去网站广州百度推广排名优化
  • 有什么做海报网站宁波seo外包方案
  • 赣州网站建设机构网站seo培训
  • 提高网站seo软文营销的技巧有哪些?
  • 网站建设属于什么发票企业策划咨询公司
  • 洛阳建网站旺道seo系统
  • 如何创建网站挣钱站长统计 站长统计
  • dw网页制作教程个人网站推广是什么意思
  • 黃冈建设厅官方网站百度百家
  • 科技网站设计公司有哪些朝阳网站seo
  • 属于外贸型的b2b电子商务网站产品推广方案ppt
  • 24小时在线观看seo外链推广工具下载
  • 邯郸中材建设有限责任公司网站网站营销网站营销推广
  • 松江做网站需要多少钱网络营销就是seo正确吗